

DIFFUSION IN SOLIDS CHAPTER 5:

ISSUES TO ADDRESS...

- How does diffusion occur?
- Why is it an important part of processing?
- How can the rate of diffusion be predicted for some simple cases?
- How does diffusion depend on structure and temperature? •

MECH 221

PM Wood-Adams

Winter 2007 1

Concordia

DIFFUSION DEMO

- Glass tube filled with water.
- At time t = 0, add some drops of ink to one end of the tube.
- Measure the diffusion distance, x, over some time. •
 - Compare the results with theory. •

PM Wood-Adams

DIFFUSION: THE PHENOMENA (1)

from regions of high concentration to regions of low Interdiffusion: In an alloy, atoms tend to migrate concentration.

Concordia

DIFFUSION: THE PHENOMENA (2)

Self-diffusion: In an elemental solid, atoms also migrate.

Diffusion: The Mechanism

- positions (as long as temperature is above absolute zero). All atoms are constantly vibrating around their lattice •
- The atoms vibrate with a distribution of frequencies and amplitudes, i.e. there is a distribution of vibrational energies
- For one atom, the vibrational energy will vary over time •
- As temperature increases the average vibrational energy increases

an adjacent space and (2) the atom has sufficient energy Diffusion is the movement of an atom from one lattice position to another. An atom can diffuse if (1) there is

MECH 221

PM Wood-Adams

Winter 2007

Concordia

Substitutional Diffusion

- applies to substitutional impurities
- atoms exchange with vacancies
 - rate depends on:

--number of vacancies --activation energy to excha

--activation energy to exchange.

increasing elapsed time

INTERSTITIAL DIFFUSION

- Applies to interstitial impurities.
- More rapid than vacancy diffusion.

MECH 221

PM Wood-Adams

Winter 2007 7

Concordia

PROCESSING USING DIFFUSION (1)

- Case Hardening:
- --Diffuse carbon atoms into the host iron atoms at the surface. --Fxample of interstitial
 - --Example of interstitial diffusion is a case hardened gear.
- Result: The "Case" is

 -hard to deform: C atoms
 "lock" planes from shearing.
 -hard to crack: C atoms put
 the surface in compression.

Fig. 5.0, *Callister 6e.* (Fig. 5.0 is courtesy of Surface Division, Midland-Ross.)

MECH 221

PM Wood-Adams

œ

Directional Quantity

Flux can be measured for:
 -vacancies
 -host (A) atoms

PM Wood-Adams

CONCENTRATION PROFILES & FLUX

 The steeper the concentration profile, the greater the flux!

MECH 221

PM Wood-Adams

STEADY STATE DIFFUSION

• Steady State: the concentration profile doesn't change with time.

- Apply Fick's First Law: J_x = -D^{dC}/dx
- If J_x)_{left} = J_x)_{right}, then $\left(\frac{dC}{dx}\right)_{left} = \left(\frac{dC}{dx}\right)_{right}$
- Result: the slope, dC/dx, must be constant (i.e., slope doesn't vary with position)!

MECH 221

PM Wood-Adams

Winter 2007 12

Concordia

Diffusion Coefficient,

- Also called diffusivity •
- Units: m^2/s
- Depends on diffusing species and host
- Depends on temperature •
- Higher diffusivity means a higher flux for the same concentration gradient

Fick's First Law: $J_{X} = -D \frac{dC}{dx}$

Non-steady state diffusion

- diffusion behavior we must solve this In order to analyze non-steady state partial differential equation. •
- conditions and the boundary conditions. The solution depends on the initial •
- We will consider one type of non-steady state diffusion only. •

MECH 221

PM Wood-Adams

Winter 2007

Diffusion through a semi infinite solid with constant surface concentration Concordia

- We can use this approximation if $L > 10\sqrt{Dt}$ •
- uniformly distributed in the solid at a concentration C₀. Before diffusion begins the diffusing atoms are
- At t=0 the concentration at the surface of the solid is suddenly changed to C_S. •

Winter 2007

PM Wood-Adams

Diffusion through a semi infinite solid with constant surface concentration Concordia

Error Function Table

sser Lable 2.1. Stabulation of Lefor Fundion Values size of strands of a

~	9	ġ,	-	-	- 92	÷	ø	3	*	ģ	ģ	6	
$r_{f_{a}}$	934	952	966	976	983	989	992	995	366	999	666	666	
0	Ó	C	Ó	Ó	Ó	o	Ó	Ó	9	Ó	Ó	0	
		6 (S	18 4.3	0 00 ⁰¹⁰	°.	°	0						S .
		8° .		-		a						ŝ	
N	9	4	v 1	1.6		1.8	1.9	2.0	22	2,4	2.6	3.8	
100			0			100		2 8 9	2.60		07.67		•
	1616	÷.				323	22	••2	.e 	1			
Supply States		No.	۰.	10			1.26	. · ·	0 ⁻⁰ (-		
31	e 5	6	Ö	ø	<u>্</u>			0	6	~	0	ŝ	
f(z)	563	603	642	677	E	742	770	505	820	842	880	910	
9 .	đ	0	Ó	Ö	Ö	Ö.	Ó	Ó	Ó	Ö	Ö	Ö	
					D	- Store			1		• •		
		ā.	° . 6 9				8						Î
2	8	8	8	2	82	8	8	8	93	0		C)	n
2 2 2	0	0	0	0	0		0	0	o	ल्ली	- <u>17</u> 1	च्चे .	•8
31 7	ACC IN				u 0 89	3.3		0	ðt ond	~~ ³			-
28 6 29 29			° Q ^a	200 € 200 €	5J	Sell-	ß		[F	6442 900 1000		6,0 6,0	8 - 18 (B
	f: .	41 22 24		58 52.	8	- Fe			0.0				201
<u>R</u>	r Fr	282	564	125	680	227	763	286	794	284	755	205	25460
60	0	00	00	0	0.1	20	03	00	0.3	0,4	0.4	0.5	20123
		Se 7. 30					n					0	0
" " "E.Dr5		2 42 C				19	0.8						t C
1. 1		ŝ	8.00	_	n Roan-		o Taunan-	_	0 9.00	_		-	
5 .990		0.02	0.05	0.10	0.15	0.20	0,25	0.30	0.35	0.40	0.45	0.50	
-1.10	19 19	0.3		-	· •••	. Fi	0	-	-		-	~	0.48

Note: z is the independent variable, i.e. $Z = \frac{2}{2\sqrt{Dt}}$ and erf(z) is the dependent variable.

Example 1

at 1100°C. Prior to commencement of diffusion the wafer was changed to 10²⁴ atoms/m³. Find the depth below the surface at Consider the impurity diffusion of gallium into a silicon wafer which the concentration will be 10²² atoms/m³ after 3 hours. free of gallium. At time = 0 the surface concentration is

Given: $D=7.0 \text{ x } 10^{-17} \text{ m}^{2/s}$

MECH 221

PM Wood-Adams

Winter 2007

Concordia

Example 2

coefficient of carbon in steel at this temperature is 1.28 x 10-11 $m^{2/s}$. The carbon content at the surface is 0.90% and the initial Consider the gas carburizing of steel at 927°C. The diffusion carbon content is 0.20%. Calculate the carbon content 0.50 mm below the surface after 5 hours of carburizing time.

Example 3

the surface concentration during treatment is 1.2 wt%. How long will it take to reach 0.8 wt% C at a position of 0.5 mm The initial concentration of C in the steel is 0.25 wt% and Consider the surface treatment of steel with C at 950°C. below the surface?

Given: $D=1.6 \times 10^{-11} \text{ m}^{2/\text{s}}$

MECH 221

PM Wood-Adams

Winter 2007

DIFFUSION AND TEMPERATURE

Diffusivity increases with T. •

pre-exponential [m²/s] (see Table 5.2, *Callister 6e*) (see Table 5.2, *Callister 6e*) activation energy [J/mol],[eV/mol] **V**P D= D₀exp K diffusivity

Experimental Data:

19

Diffusion Coefficient

Species Metal $D_0(m^2/s)$ kJ/mol eV/al Fe α -Fe 2.8×10^{-4} 251 2.6 Fe α -Fe 2.8×10^{-4} 251 2.6 Fe γ -Fe 5.0×10^{-5} 284 2.9 Fe γ -Fe 5.0×10^{-5} 284 2.9 C α -Fe 5.0×10^{-5} 284 2.9 F (FCC) 6.2×10^{-5} 284 2.9 C γ -Fe 5.3×10^{-5} 148 1.5 Cu Cu 7.8×10^{-5} 148 1.5 Zn Cu 2.4×10^{-5} 2.11 2.11 Zn Cu 2.3×10^{-5} 189 1.9 Al Al 2.3×10^{-5} 136 1.4 Mo Al 1.2×10^{-5} 136 1.4	Activation En	ergy Qd	Calculo	nted Values
Fe α -Fe 2.8×10^{-4} 251 2.6 (BCC) (BCC) 2.8×10^{-4} 251 2.6 Fe γ -Fe 5.0×10^{-5} 284 2.9 (FCC) ϵ -Fe 5.0×10^{-5} 284 2.9 C α -Fe 5.0×10^{-5} 284 2.9 C α -Fe 5.2×10^{-5} 148 1.5 Cu Cu 7.8×10^{-5} 148 1.5 Zn Cu 2.3×10^{-5} 189 1.9 Zn Cu 2.3×10^{-5} 189 1.9 Al Al 2.3×10^{-5} 189 1.9 Mo Al 2.3×10^{-5} 136 1.4	kJ/mol	eV/atom	$T(^{\circ}C)$	$D(m^2/s)$
Fe (BCC) Fe γ -Fe 5.0×10^{-5} 284 2.9 (FCC) 5.0×10^{-5} 284 2.9 C α -Fe 6.2×10^{-7} 80 0.8 C γ -Fe 5.3×10^{-5} 148 1.5 Cu Cu 7.8×10^{-5} 148 1.5 Zn Cu 2.4×10^{-5} 189 1.9 Al Al 2.3×10^{-4} 189 1.9 Mo Al 2.3×10^{-5} 136 1.44 1.44	251	2.60	500	3.0×10^{-21}
Fe γ -Fe 5.0×10^{-5} 284 2.9 C α -Fe 5.0×10^{-5} 284 2.9 C α -Fe 6.2×10^{-7} 80 0.8 C γ -Fe 2.3×10^{-5} 148 1.5 Cu Cu Cu 7.8×10^{-5} 148 1.5 Zn Cu Cu 2.3×10^{-5} 148 1.5 Zn Cu Zn 2.3×10^{-5} 148 1.9 Al Al 2.3×10^{-5} 139 1.9 Mo Al 6.5×10^{-5} 136 1.4 1.4 Mo Al 1.2×10^{-4} 131 1.3			900	1.8×10^{-15}
C $\alpha^{-}Fe$ 6.2×10^{-7} 80 0.8 C $\gamma^{-}Fe$ 5.2×10^{-5} 148 1.5 Cu Cu Cu 7.8×10^{-5} 148 1.5 Zn Cu 2.4×10^{-5} 211 2.1 Zn Cu 2.4×10^{-5} 189 1.9 Al Al 2.3×10^{-4} 144 1.4 Cu Al 6.5×10^{-5} 136 1.4 Mo Al 1.2×10^{-4} 131 1.3	284	2.94	900 1100	1.1×10^{-17} 7.8×10^{-16}
C γ -Fe 2.3×10^{-5} 148 1.5 Cu Cu 7.8×10^{-5} 148 1.5 Zn Cu 7.8×10^{-5} 211 2.1° Zn Cu 2.4×10^{-5} 189 1.9 Al Al 2.3×10^{-4} 144 1.4 Cu Al 6.5×10^{-5} 136 1.4 Mo Al 1.2×10^{-4} 131 1.3	80	0.83	500 900	2.4×10^{-12} 1.7×10^{-10}
Cu Cu 7.8×10^{-5} 211 2.3 1.0^{-4} 1.44 1.44 <td>148</td> <td>1.53</td> <td>900 1100</td> <td>5.9×10^{-12} 5.3×10^{-11}</td>	148	1.53	900 1100	5.9×10^{-12} 5.3×10^{-11}
Zn Cu 2.4×10^{-5} 189 1.9 Al Al 2.3×10^{-4} 144 1.4 Cu Al 2.3×10^{-5} 136 1.4 Mo Al 1.7×10^{-5} 131 1.3	211	2.19	500	4.2×10^{-19}
Al Al 2.3×10^{-4} 144 1.4 Cu Al 6.5×10^{-5} 136 1.4 Mo Al 1.2×10^{-4} 131 132	189	1.96	500	4.0×10^{-18}
Cu Al 6.5×10^{-5} 136 1.4. Mo Al 1.2×10^{-4} 131 1.3.	144	1.49	500	4.2×10^{-14}
Mo Al 1.7 × 10 ⁻⁴ 131 1.3	136	1.41	500	4.1×10^{-14}
	131	1.35	500	1.9×10^{-13}
Cu Ni 2.7×10^{-5} 256 2.6	256	2.65	500	$1.3 imes 10^{-22}$

Source: E. A. Brandes and Heinemann, Oxford, 1992.

MECH 221

PM Wood-Adams

Winter 2007

Concordia

PROCESSING QUESTION

- Copper diffuses into a bar of aluminum.
 - 10 hours at 600C gives desired C(x).
- How many hours would it take to get the same C(x) if we processed at 500C?

Key point 1: C(x,t_{500C}) = C(x,t_{600C}). Key point 2: Both cases have the same C_o and C_s.

Result: Dt should be held constant. •

$$\frac{C(x,t)-C_0}{C_s-C_0} = 1 - erf\left(\frac{x}{\sqrt{2Dt}}\right) \rightarrow (Dt)500^{\circ}C = (Dt)600^{\circ}C$$

٠

PM Wood-Adams

SUMMARY: STRUCTURE & DIFFUSION

Diffusion FASTER for	Diffusion SLOWER for
 open crystal structures 	 close-packed structures
 lower melting T materials 	 higher melting T materials
 materials w/secondary bonding 	 materials w/covalent bonding
 smaller diffusing atoms 	 larger diffusing atoms
 cations 	• anions
 Iower density materials 	 higher density materials

Winter 2007 20

PM Wood-Adams